PIRM II -Automated Battery Characterization

Team: sddec20-25 Advisor: Nathan Neihart Client: Solar Car Website: <u>http://sddec20-25.sd.ece.iastate.edu/</u> Team Lead: Joe DeFrancisco Email: <u>joedef@iastate.edu</u>

> Joe DeFrancisco, Ben Kenkel, Bryan Kalkhoff, Connor Luedtke, Ryan Willman, Kyle Czubak

Project Overview - Recap

- Best performance with matched batteries
- PrISUm Solar Car currently does not have an efficient way of characterizing batteries on a battery pack scale.
 - Currently the procedure is to measure the open circuit voltage of each battery and group them based on that measurement.
- Process is time consuming on large scale (1000 or more batteries)
- We will design and build an automated lithium battery characterizer

Block Diagram - Recap

- Test Controller- Microcontroller
 - Will communicate with pi via CAN
- The micro will control charging/discharging
 - Enabling for each battery independently
- The micro takes all the information and sends it to a pi via CAN
 - The pi handles the user interface

Current Status

Hardware:

- A couple of prototypes have been ordered and tested
 - Microcontroller development board
 - Load Circuit
- Schematic for Rev 1 finalized
- Rev 1 PCB Layout Complete
 - Ready to order on 10/5/2020

Software:

- Flask app setup and running
 - Including database
- Microcontroller communication libraries being written

PCB Layout

Flask App

Automated Li-Ion Battery Characterizer

Back	Select Pack	
	Select a Pack	~
	Submit	

Technical Challenges

- Board Layout
 - High current design
 - Thermal management
 - Physical Size of PCB
- Flask App
 - Two very different use case environments
 - PI Touchscreen only, used for starting/stopping the test
 - Computer More configuration options and fetching test data

Semester Goals-Updated

- Have Revision 1 Hardware
 - Completed PCB design and have ordered rev1
- Completed Embedded Code
 - Code was started and currently in development
- Enclosure Designed
 - With finalized board dimensions, designing the enclosure has started
- Test Hardware
 - Will be done when rev 1 comes in
- Test Hardware and Software interaction
 - \circ Will be done when rev 1 comes in
- Communicate between modules and app
 - \circ Will be done when rev 1 comes in

Next Steps

- Hardware
 - Order Board and parts
 - Test Test Test Test Test
- Software
 - Create final firmware for batter characterizer
 - Communicate between modules and pi
 - Finish more pages for Flask app
- Enclosure Design

Timeline

Current Project Timeline - Second Semester

Tasks

Enclosure

